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Abstract

A linearized analysis is performed in this paper in order to analyze the onset of Darcy–Brinkman convection in a fluid-saturated porous layer
heated from below, by considering the case when the fluid and solid phases are not in local thermal equilibrium. The problem is transformed
into an eigenvalue equation which is solved in a first step by using an one-term Galerkin approach: an explicit relationship between the Darcy–
Rayleigh number based on the fluid properties R and the horizontal wave number k is obtained. Minimization of R over k is performed analytically
and finally, critical values for R and k are obtained for various values of the three parameters of the problem, namely the Darcy number D, the
porosity-scaled conductivity ratio γ and the scaled inter-phase heat transfer coefficient H . In a second step, a general N -terms Galerkin approach
is used and finally comparisons are performed between the results given by these two approaches.
© 2008 Published by Elsevier Masson SAS.
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1. Introduction

The onset of convection in a porous layer heated from be-
low is the “porous medium” version of the Bénard problem
in clear fluids. A review of the state-of-the art in this area of
research may be found in Rees [1] and Nield and Bejan [2].
Earlier papers in this field are those by Homsy and Walker [3]
and Combarnous [4].

On the other hand, in a porous medium the volume aver-
aged temperatures of the solid and fluid phases are generally
different from one another and this is termed as local thermal
non-equilibrium. Nield and Bejan [2] have discussed in their
book a two-field model for the energy equation. Many studies
in the literature of the non-equilibrium effects concentrated on
the forced convective flows, see Kuznetsov [5], but we are in-
terested here in the combination of such effects with natural
convective flows, see, for instance, the review by Rees and Pop
[6]. Rees and Pop have investigated in a couple of papers [7–9]
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the thermal non-equilibrium effect on several free convective
flows in fluid saturated porous media.

An earlier work in the field is that by Banu and Rees [10],
who were able to determine the Rayleigh number correspond-
ing to the onset of convection in the conditions of thermal
nonequilibrium between fluid and solid phases of the porous
layer. Related to the present discussion is also the paper by
Rees [11], where the numerical study by Homsy and Walker
[3] was extended, by performing an asymptotic analysis of the
singular perturbation problem which arises in the small Darcy–
Rayleigh number limit. Postelnicu and Rees [12] extended [10]
by including the boundary effects as modeled by the Brinkman
terms. They included also the form-drag, but it was shown that
these terms have no effect on stability criteria, since the basic
state whose stability is being analyzed was one of no flow.

Three recent papers dealing with the onset of convection
in porous layers using a thermal nonequilibrium model are
[13], [14] and [15]. Malashetty et al. [13] carried out a simi-
lar study as in [12], while Malashetty et al. [14] analyzed the
effects of thermal nonequilibrium and anisotropy in both me-
chanical and thermal properties of the porous medium on the
onset of convection. They performed both an analytical and
asymptotic study within the framework of a linear stability anal-
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Nomenclature

b form drag coefficient
c specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
d depth of the porous layer . . . . . . . . . . . . . . . . . . . . . m
D Darcy number
F1,F2 dimensionless coefficients, (11)
f y-dependent part of the perturbed stream function

(dimensionless)
g y-dependent part of the perturbed fluid phase tem-

perature (dimensionless); also, acceleration due to
gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

h y-dependent part of the perturbed solid phase tem-
perature (dimensionless); also, inter-phase heat
transfer coefficient . . . . . . . . . . . . . . . . . . . . W/m3 K

H scaled inter-phase heat transfer coefficient
K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

k horizontal wave number; also, with subscript,
thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K

R Darcy–Rayleigh number
V velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
x, y Cartesian co-ordinates taken along the lower sur-

face of the porous layer and normal to it, respec-
tively

Greek letters

α diffusivity ratio

β coefficient of expansion . . . . . . . . . . . . . . . . . . . K−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

κ diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s
ε porosity
ψ stream function, dimensionless
Ψ perturbation of the stream function
θ dimensionless temperature of the fluid phase in the

basic conduction state
Θ perturbation of the fluid phase non-dimensional

temperature
φ dimensionless temperature of the fluid phase in the

basic conduction state
Φ perturbation of the solid phase non-dimensional

temperature
γ porosity-scald conductivity ratio

Subscripts

c cold
e effective (refers to viscosity)
f fluid
h hot
s solid

Superscripts

′ = differentiation with respect to y
ysis. Malashetty et al. [15] used a generalized Darcy model
to analyze an Oldroyd-B fluid saturated porous medium and
a two-field model for energy equation each representing solid
and fluid phases separately. Linear stability analysis revealed
that there is a competition between the processes of viscous
relaxation and thermal diffusion causing the first convective in-
stability to be oscillatory rather than stationary.

Postelnicu [16] dealt with the onset of mixed convection in
a porous layer heated from below, by considering the effect of
inertia, when the fluid and solid phases are not in local ther-
mal equilibrium, in a frame of a linear stability analysis. The
mixed convection is considered in the sense of a mean horizon-
tal pressure gradient. Critical Rayleigh and wave numbers have
been analytically determined in both two and three-dimensional
cases.

The present paper continues the study by Postelnicu and
Rees [12], named hereinafter Part 1, by taking into account
isothermal rigid boundaries. In Part 1 the case of stress-free
boundaries was considered, leading to the possibility of an ana-
lytical approach. In the present case, such an analytical tackling
is no more possible, so that we have to use a numerical ap-
proach, based on the Galerkin technique, in order to find the
critical Darcy–Rayleigh number and wave number at which the
convection occurs.
2. Mathematical analysis

We consider a porous layer saturated with an incompressible
Newtonian fluid. The layer is heated from below, its lower sur-
face, located at y = 0, being held at a temperature Th, while the
upper one, located at y = d , is at Tc < Th. The porous layer is
isotropic, but the local thermal equilibrium does not apply.

Considering that both form-drag and boundary effects are
significant and invoking the Boussinesq approximation, the
governing equations read [2]

∇ · V = 0 (1)

ρf

ε

∂V
∂t

+ ρf

ε2
V · ∇V = −∇p + μe∇2V − μf

K
V

+ ρf gβ(T − Tc)y − ρf b√
K

V|V| (2)

ε(ρc)f
∂Tf

∂t
+ (ρc)f V · ∇Tf = εkf ∇2Tf + h(Ts − Tf ) (3)

(1 − ε)(ρc)s
∂Ts

∂t
= (1 − ε)ks∇2Ts − h(Ts − Tf ) (4)

where usual notations are used. The boundary conditions are

V = 0, T = Th, at y = 0 (5a)

V = 0, T = Tc, at y = d (5b)
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We introduce the dimensionless quantities

x̃ = 1

d
x, t̃ = (ρc)f d2

kf

t, Ṽ = εkf

(ρc)f d
V

p̃ = μkf

(ρc)f K
p, θ = Tf − Tc

Th − Tc

, φ = Ts − Tc

Th − Tc

(6)

and the governing equations (1)–(4) become

∇ · V = 0 (7)

εF1
∂V
∂t

+ F1V · ∇V

= −ε2F1∇p + D∇2V − V + Rθy − F2V|V| (8)

∂θ

∂t
+ V · ∇θ = ∇2θ + H(φ − θ) (9)

α
∂φ

∂t
= ∇2ϕ + γH(θ − φ) (10)

where the tildes were omitted, for convenience of presentation.
In Eqs. (8)–(10) the following notations were introduced

F1 = ρf κK

ε2d2μf

, F2 = ρf κK1/2

dμf

, D = μe

μf

· K

d2

H = hd2

εkf

, α = (ρc)s

(ρc)f
· kf

ks

, R = ρf gβ(Th − Tc)Kd

εμf kf

(11)

where R is the Darcy–Rayleigh number based on the fluid
properties, D is the Darcy number, γ is the porosity-scaled
conductivity ratio and H the scaled inter-phase heat transfer
coefficient.

The boundary conditions (5) become

V = 0, θ = φ = 1 on y = 0 (12a)

V = 0, θ = φ = 0 on y = 1 (12b)

Focusing on the two-dimensional case, the basic conduction
profile, whose stability is studied here is

ψ = 0, θ = φ = 1 − y (13)

where ψ is the dimensionless streamfunction, θ and φ are di-
mensionless temperatures in the fluid and solid phase. The basic
conduction profile (13) is perturbed by setting

ψ = Ψ (x, y), θ = 1 − y + Θ(x,y)

φ = 1 − y + Φ(x,y) (14)

and the problem in perturbed quantities reads

∂2Ψ

∂x2
+ ∂2Ψ

∂y2
− D

(
∂4Ψ

∂x4
+ 2

∂4Ψ

∂x2∂y2
+ ∂4Ψ

∂y4

)
= R

∂Θ

∂x
(15)

∂2Θ

∂x2
+ ∂2Θ

∂y2
+ ∂Ψ

∂x
+ H(Φ − Θ) = 0 (16)

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ γH(Θ − Φ) = 0 (17)

[see Part 1]. We mention that (15) is the Darcy–Brinkman equa-
tion, while (16) and (17) are the energy equations in the fluid
and solid phase, respectively.
The boundary conditions for the perturbed equations (15)–
(17) are

Ψ = ∂Ψ

∂y
= Θ = Φ = 0 on y = 0 and y = 1 (18)

which correspond to rigid isothermal boundaries (RB). To this
end, we remark that Postelnicu and Rees [12] have solved the
problem consisting of Eqs. (15)–(17) in the case of isothermal
stress-free boundaries (SFB). These authors were able to get an-
alytical solutions, supplementing their study with an asymptotic
analysis for both small and large values of H .

Eqs. (15)–(17) admit solutions in the form

Ψ = f (y) sin kx, Θ = g(y) coskx

Φ = h(y) coskx (19)

where k is the horizontal wave number. By substituting (19)
into Eqs. (15)–(17), we obtain

−D(f iv − 2k2f ′′ + k4f ) + (f ′′ − k2f ) = −Rkg (20)

g′′ − (k2 + H)g + kf + Hh = 0 (21)

h′′ − (k2 + γH)h + γHg = 0 (22)

while the boundary conditions (18) become

f = f ′ = g = h = 0 on y = 0 and y = 1 (23)

We notice to this end that primes denote differentiation with
respect to y.

3. Numerical analysis and results

In the present case, of isothermal rigid boundaries, analytic
progress is no more possible, so that a numerical approach is
necessary. A Galerkin technique will be used on the basis that
this method has the advantage of dealing with many parameters
very economically (see, for instance, Finalyson [17]).

3.1. One-term Galerkin approach

We take

f = Af1, g = Bg1, h = Ch1 (24)

where f1, g1 and h1 are trial functions and A,B and C are con-
stants. The form of the boundary conditions (23) allows us to
take

f1 = y2(1 − y)2, g1 = y(1 − y), h1 = y(1 − y)

(25)

Multiplying (20) by f and integrating from 0 to 1, (21) by g

and integrating from 0 to 1, and (22) by h and integrating from
0 to 1, we get after some algebra the following algebraic homo-
geneous system

−
[

4

5
D + 2

105
(2k2D + 1) + 1

630
k2(1 + k2D)

]
A

+ 1

140
RkB = 0 (26)
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Fig. 1. Neutral curves for H = 100, γ = 0.001,0.01,0.1,1,5,10,50 and 100: (a) D = 10−2, (b) D = 10−3, (c) D = 10−4, (d) D = 0.
1

140
kA −

[
1

3
+ 1

30
(k2 + H)

]
B + 1

30
HC = 0 (27)

1

30
γHB −

[
1

3
+ 1

30
(k2 + γH)

]
C = 0 (28)

Equating the determinant of this system with zero gives an ex-
plicit expression for the Rayleigh number

R = a11(a22a33 − a23a32)

a2
12a33

(29)

where

a11 = −
[

1

630
Dk4 +

(
4

105
D + 1

630

)
k2 + 4

5
D + 2

105

]

a12 = 1
k, a22 = −

(
1

k2 + 1 + 1
H

)

140 30 3 30
a23 = 1

30
H, a32 = 1

30
γH

a33 = −
(

1

30
k2 + 1

3
+ 1

30
γH

)
(30)

Minimization of the Rayleigh number over k produces a poly-
nomial equation, which can be solved by routine procedures. To
this end, we remark that the explicit form of (29) is

R = 28(10 + k2)(10 + H + γH + k2)
[
12 + k2 + D(504 + 24k2 + k4)

]
24k2(10 + γH + k2)

(31)

and this explicit expression is especially instructive since it
clearly shows that: (i) R is always positive, (ii) R → ∞ as 1/k2

when k → 0 and (iii) R → ∞ as k4 when k → ∞, in a full
agreement with Fig. 1 (a)–(d).
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3.2. N -terms Galerkin approach

Now the unknown functions f,g and h are expressed as

f =
N∑

i=1

Aifi, g =
N∑

i=1

Bigi, h =
N∑

i=1

Cihi (32)

where the trial functions are taken as

fi = yi+1(1 − y)2, gi = yi(1 − y), hi = yi(1 − y)

(33)

After algebraic manipulations, we get the eigenvalue equation

MX = 0 (34)

where

Mij = −D

1∫
0

f iv
j fi dy + (2k2D + 1)

1∫
0

f ′′
j fi dy

− k2(k2D + 1)

1∫
0

fjfi dy

1 � i � N,1 � j � N (35a)

Mij = k

1∫
0

gjfi dy, 1 � i � N,N + 1 � j � 2N (35b)

Mij = 0, 1 � i � N,2N + 1 � j � 3N (35c)

Mij = k

1∫
0

fjgi dy, N + 1 � i � 2N,1 � j � N (35d)

Mij =
1∫

0

g′′
j gi dy − (k2 + H)

1∫
0

gjgi dy

N + 1 � i � 2N, N + 1 � j � 2N (35e)

Mij = H

1∫
0

hjgi dy, N + 1 � i � 2N,2N + 1 � j � 3N

(35f)

Mij = 0, 2N + 1 � i � 3N,1 � j � N (35g)

Mij = γH

1∫
0

gjhi dy, 2N + 1 � i � 3N,N + 1 � j � 2N

(35h)

Mij =
1∫

0

h′′
j hi dy − (k2 + γH)

1∫
0

hjhi dy

2N + 1 � i � 3N,2N + 1 � j � 3N (35i)

and X = {A1, . . . ,AN,B1, . . . ,BN,C1, . . . ,CN }T.
Numerical trials showed that N = 10 terms are enough to get

accurate results. Therefore, all the results reported hereinafter
are for 10 terms in the Galerkin expansions.
In Table 1 there are listed the critical values of the wave
number kc and Rayleigh number Rc , for 1-term and N -terms
Galerkin approaches, when

• D = 0 (that is for the Darcy flow model), 10−3 (which cor-
responds to a relatively sparse porous medium) and 1. We
mention the Darcy number is related to the importance of
viscous effects in the region of boundaries, small values of
D decreasing this effect, which allows the fluid to move
more easily, thereby decreasing the critical Rayleigh num-
ber.

• γ = 0,1 and 10. We remark that low values of γ corre-
spond to a relatively poor conducting fluid (for example,
air in a metallic porous medium), while large γ mean that
heat is transported through both solid and fluid phases.

The range considered for H extends from very small to very
large values (in the limit H → ∞). The local thermal equilib-
rium is recovered in the large H -limit.

One can easily remark from Table 1 that both kc and Rc are
overestimated by the one-term Galerkin approach for the all
range of values considered for H . In this table there are also
included the results reported by Banu and Rees [10] when the
Darcy number D = 0, that is for the Darcy flow model. For
sake of comparison, available in that paper is a set of results
for γ = 1 and H ranging from 0.1 to 105. As expected, the
agreement between these authors’ results and our results is very
good for the 10-term Galerkin method. It is easily seen that the
agreement is excellent for medium values of H and good for
large H .

Fig. 1 shows a selection of neutral curves, R against k/π , for
various values of γ and D with H = 100. We remark the famil-
iar shape for Bénard-like problems, with a single well-defined
minimum value and this is the similar trend obtained in Part 1:
the values of Rc become smaller as D decreases and as γ in-
creases. Moreover, the minimum values of the Darcy–Rayleigh
number are close in the SFB case (see Fig. 2 from Part 1) and
in the present case.

In Figs. 2 and 3 we present the behavior of the critical
Darcy–Rayleigh number and critical wave number, respec-
tively, as functions of H and γ for D = 0, D = 10−3 and
D = 1. Following the same style of graphical representation as
in Part 1, in order to facilitate the comparisons, in both Figs. 2
and 3, log10 H is used in the abscissa. We find again essential
similarities between the SFB and RB cases, such as:

• Rc increases as H increases and γ decreases.
• When H is small, all the Rc curves corresponding to vari-

ous γ tend to an asymptotic which does not depend on γ ,
see Part 1 for additional comments.

• kc attains the value π for large H , for any γ , except γ = 0,
but its maximum values (obtained at intermediate values of
H) are larger for RB than for SFB case.

• Critical values of the Darcy–Rayleigh number Rc are larger
in the RB case.
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Table 1
Comparisons between the results for critical wave number and Darcy–Rayleigh
number given by the 1-term (1t) and 10-terms (10t) Galerkin approach

D = 1

H γ = 0

kc (1t) Rc (1t) kc (10t) Rc (10t)

10−6 3.120 1795.67 3.120 1752.2105
10−5 3.120 1795.67 3.120 1752.2113
10−4 3.120 1795.68 3.120 1752.219
0.001 3.120 1795.76 3.120 1752.299
0.01 3.120 1796.58 3.121 1753.101

0.1 3.125 1804.76 3.126 1761.109
1 3.171 1885.93 3.173 1840.523

10 3.492 2654.55 3.499 2590.570
100 4.266 9512.66 4.282 9233.510

1000 4.688 75402.0 4.704 72713.77
105 4.765 7.31×106 4.782 7.034×106

γ = 1

10−6 3.11982 1795.67 3.120 1752.2105
10−5 3.11982 1795.67 3.120 1752.2113
10−4 3.11983 1795.68 3.120 1752.2193
0.001 3.11988 1795.76 3.120 1752.2995
0.01 3.12036 1796.58 3.121 1753.1005

0.1 3.12514 1804.72 3.126 1761.0641
1 3.167 1881.67 3.168 1836.336

10 3.307 2387.99 3.311 2330.207
100 3.204 3292.16 3.206 3210.852

1000 3.130 3556.54 3.133 3470.010
105 3.120 3590.99 3.120 3504.071

γ = 10

10−6 3.11982 1795.67 3.120 1752.2105
10−5 3.11982 1795.67 3.120 1752.2113
10−4 3.11988 1795.67 3.120 1752.21932
0.001 3.11988 1795.76 3.120 1752.2994
0.01 3.11988 1795.76 3.121 1753.0965

0.1 3.12469 1804.33 3.131 1760.6872
1 3.143 1855.92 3.144 1811.060

10 3.134 1945.59 3.134 1898.395
100 3.122 1971.76 3.122 1924.006

1000 3.120 1974.89 3.120 1927.082
105 3.11982 1975.24 3.120 1927.428

D = 0.001

H γ = 0

kc (1t) Rc (1t) kc (10t) Rc (10t)

0.001 3.29899 47.2963 3.215 43.151884
0.01 3.29972 47.3167 3.215 43.171098

0.1 3.30696 47.5202 3.223 43.362998
1 3.377 49.5312 3.291 45.259

10 3.906 67.9635 3.812 62.651
100 5.817 212.913 5.686 200.000

1000 8.718 1424.14 8.522 1353.562
104 10.271 13091.9 10.032 12481.318

γ = 1

0.001 3.29899 47.2963 3.214 43.1519
0.1 3.29972 47.3166 3.219 43.1711
0.1 3.30689 47.5191 3.222 43.3620

1 3.370 49.4323 3.285 45.163
10 3.610 62.1234 3.514 56.997

100 3.444 86.2664 3.349 78.912
1000 3.316 93.6180 3.230 85.441

104 3.301 94.4894 3.216 86.212
105 3.299 94.5782 3.215 86.291

Table 1 (Continued)

D = 0.001

H γ = 10

kc (1t) Rc (1t) kc (10t) Rc (10t)

1 3.335 48.8195 3.249 44.573
10 3.322 51.2040 3.236 46.737

100 3.302 51.9266 3.217 47.379
1000 3.299 52.0316 3.215 47.456

104 3.29894 52.0224 3.215 47.464
105 3.29891 52.0233 3.214 47.464

D = 0

H γ = 0

kc (1t) Rc (1t) kc (10t) Rc (10t)

10−5 3.30975 45.5352 3.162 40.000709
10−4 3.30976 45.5354 3.162 40.000890
0.001 3.30983 45.5373 3.162 40.002702
0.01 3.31058 45.5569 3.163 40.020819

0.1 3.31799 45.7522 3.170 40.201765
1 3.390 47.6811 3.239 41.990

10 3.936 65.3166 3.767 58.379
100 6.028 201.873 5.776 186.738

1000 10.492 1288.19 10.057 1222.361
104 18.6167 11112 17.846 10657

γ = 1

H Present Banu and
Rees [10]

kc (1t) Rc (1t) kc (10t) Rc (10t) Rc

10−5 3.30975 45.5352 3.162 40.000709 −
10−4 3.30976 45.5354 3.162 40.000890 −
0.001 3.30983 45.5373 3.162 40.002702 −
0.01 3.31058 45.5569 3.163 40.020810 39.498405

0.1 3.31792 45.7512 3.169 40.192163 39.677163
1 3.383 47.5867 3.232 41.897 41.362100

10 3.630 59.7660 3.460 52.991 52.359639
100 3.460 83.0308 3.293 73.258 72.339570

1000 3.328 90.1332 3.178 79.220 78.190834
104 3.31156 90.9751 3.164 79.922035 78.879042
105 3.30993 91.0608 3.162 79.993431 78.949044

H γ = 10

kc (1t) Rc (1t) kc (10t) Rc (10t)

10−5 3.30975 45.5352 3.162 40.000709
10−4 3.30976 45.5354 3.162 40.000890
0.001 3.30983 45.5373 3.162 40.002701
0.01 3.31057 45.5568 3.163 40.020719

0.1 3.31726 45.7423 3.169 40.192163
1 3.347 47.0004 3.197 41.335

10 3.333 49.2974 3.183 43.336
100 3.313 49.9952 3.165 43.923

1000 3.310 50.0792 3.162 43.993
104 3.30978 50.0877 3.162 43.99996
105 3.30975 50.0886 3.162 44.000678

4. Conclusion

1. The one-term Galerkin approach proves its utility at least in
the initial guessing of the critical wave number and Rayleigh
number. There are many papers dealing with convection in clear
fluids or in porous media where an one-term Galerkin approach
is used solely. On the other hand, some authors prefer a two-
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Fig. 2. Variation of the critical Rayleigh number with log10 H for various values
of γ : (a) D = 0; (b) D = 0.001; (c) D = 1.

Fig. 3. Variation of the critical wave number kc with log10 H for various values
of γ : (a) D = 0; (b) D = 0.001; (c) D = 1.
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terms Galerkin technique, by keeping reasonably the amount of
algebra and preserving the advantage of an analytical treatment
of the problem.

Once determinant that leads to the eigenvalue equation has
the rank N greater than 3, say, a N -term Galerkin approach
looses its analytical advantage, but obviously it is preferable
in order to get accuracy of the results. Note that analytical ap-
proach means not only the finding of the critical Rayleigh num-
ber and wave number, but also the minimization of the Rayleigh
number over k in the present problem or over several parame-
ters in other situations.

At this end, it is instructive to mention an argument in favor
of the Galerkin approximation invoked in a very recent paper
by Nield and Kuznetsov [18]: they claim that the Galerkin ap-
proximation applied to Rayleigh–Bénard problems will lead to
an overestimate of the Rayleigh number by not more than 3%
(p. 1214 in that paper).

There are of course many other possibilities to solve the
eigenvalue problems arising in convective processes (or in other
engineering branches). But whenever an iterative procedure is
used, there is necessary to provide an initial guess of the eigen-
value, which can be obtained via the one-term Galerkin ap-
proach.

2. Another conclusion drawn from the present study is the qual-
itative and quantitative comparison between the SFB and RB
case: the critical Rayleigh number increases as H increases and
γ decreases; when H is small, all the Rc curves corresponding
to various γ tend to an asymptotic which does not depend on
γ ; critical wave number attains the value π for large H , for any
γ , except γ = 0.

Many authors advocate that an analysis of SFB case offers
results in qualitative agreement with the RB case. Our paper
offers not only a support for this assertion, but gives also quan-
titative comparisons between these two cases.

Finally, our results show that for Darcy–Bénard convection
in a porous layer, in non-equilibrium conditions, both critical
wave number and Darcy–Rayleigh number are larger in the RB
case than in the SFB case.
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